Написать пост

Как быстро развернуть хранилище и аналитику данных для бизнеса

История запуска небольшого хранилища данных российской инвестиционной площадки по финансированию малого и среднего бизнеса

Сегодня хочу рассказать историю проекта по запуску небольшого хранилища данных DWH одной из известных российских инвестиционных площадок по финансированию малого и среднего бизнеса.

Два года назад в России стал довольно активно развиваться рынок краудлендинга. Краудлендинг — это процесс, при котором группа инвесторов дает займы компаниям. Но изюминка заключается в том, что в роли инвесторов выступают обычные люди, такие как мы с вами. А заемщиками выступают обычные организации типа ИП или ООО, которые в основном управляют либо розничным бизнесом, либо e-commerce. Соответственно была запущена инвестиционная платформа, которая сводила вместе инвесторов и заемщиков.

Не стоит и говорить, что сразу после запуска площадки руководству потребовалась управленческая и аналитическая отчетность для управления бизнесом. Была поставлена цель быстро настроить предоставление ежедневных оперативных ключевых показателей для кампании.

Сам WEB-сайт инвестиционной площадки и все его внутренние процессы, или так называемый «кредитный конвейер», крутились на БД PostgreSQL. Кредитный конвейер — это собирательное понятие, описывающее весь процесс выдачи компаниями кредитов, начиная от подачи заемщиком заявки на займ и заканчивая погашением кредита.

Стек технологий, который был выбран для внедрения этого проекта, был БД MS SQL + SQL Server Analysis Service + сводные таблицы OLAP в Excel (BI система) для разработки ежедневных кубов OLAP.

Перед дальнейшим рассказом хотел бы расшифровать некоторые термины:

  • OLAP — это online analytical processing, он же — оперативный анализ данных. Для обычного потребителя отчета это выглядит как сводная таблица в Excel. Но подключается она к SQL Server Analysis Service для отбора данных и отображения их в Excel.
  • DWH – аббревиатура от Data Warehouse, т.е. хранилище данных. Некая база данных, где собирается вся информация о нашем проекте.
  • ETL-процесс — Extraction-Transformation-Loading т.е. Извлечение, Обработка, Загрузка. Подразумевается процесс загрузки данных из одной или нескольких исходных систем в DWH. Этот процесс извлекает информацию из внешних систем-источников, трансформирует ее, очищают и загружают в единое хранилище.
  • BI-система – инструмент аналитики и визуализации показателей. Business Intelligence (BI) позволяет компаниям собрать информацию из различных источников, проанализировать ее и представить в наиболее понятном и удобном для восприятия виде. С помощью различных программ и инструментов BI специалисты анализируют большие массивы данных, на основании которых разрабатывают и автоматизируют отчетность и дашборды. На основе полученных данных сотрудники принимают ключевые для развития компании решения

Важно понимать, что под сводными таблицами в Excel понимается не просто статичный отчет, а полноценная BI-система для аналитики данных. Набор показателей и фильтров, которыми можно «вращать» в реальном времени. Добавлять/удалять показатели, настраивать фильтры и смотреть статистику в различных разрезах — все это называется общим термином аналитика показателей.

Круг задач, которые нужно решить, был следующим:

  1. Настроить ежедневную выгрузку данных из БД PostgreSQL в хранилище DWH.
  2. Собрать структуры данных и детальные витрины показателей Data Marts.
  3. На основе этих витрин собрать кубы на MS Analysis Service и при этом посчитать порядка 30 показателей и измерений.
  4. Собрать сводную таблицу с помощью которого можно смотреть показатели и проводить аналитику. Добавлять показатели, фильтры и разрезы для получения нужной статистики.

Архитектура для данного проекта была принята следующая:

Что было сделано в первую очередь?

В первую очередь был настроен обмен данными с хранилищем через ETL-процессы. В MS SQL были созданы коннекторы, которые могли подключаться источнику данных. Под источником понимается другая БД PostgreSQL. Также при создании коннектора установили драйверы для PostgreSQL и настроили системный DSN.

Витрины данных (Data Marts)

Следующим большим шагом проекта было создание витрин данных. В самой базе было создано всего 3 основные смысловые схемы:
stg — от слова STAGE. В ней лежат таблицы структура данных приближенная к источникам. Туда загружаются данные напрямую из источника.
dim — от слова dimensions. Схема, в которой хранятся справочники.
dds — от слова detail data stage т.е. детальный слой данных. В ней собираются уже обработанные данные взятые из stg.

Для общего понимания обработка dds выглядит как набор процедур и функций порядка 2000 строк чистого SQL кода. Важно заметить, что динамический SQL не использовался, что сильно упрощало жизнь.

Ну и один из последних шагов — создание кубов на MS SQL Analysis Service. Выполнялось все это с помощью инструмента Visual Studio. В них создается физическая и логическая структура сущностей на основе витрин DDS. А также настраиваются показатели и измерения с бизнес понятными переводом для потребителей отчетов.

Также очень важно понимать, что кубы OLAP очень удобно использовать на небольших хранилищах не более чем в несколько терабайт. Если речь идет о построении больших хранилищ, например для ритейла, телекоммуникаций или банковской сферы, то объемы данных начинают исчисляться десятками терабайт. Большие объемы требуют полноценные BI-решения с наличием высокопроизводительных серверов. Например, такие продукты как Oracle BI, SAS BI являются полноценными Enterprise решениями стоимость которых начинаются с цифры с нескольким количеством нулей и исчисляется в долларах.

В общем была создана система аналитики на основе OLAP со стартовым набором показателей, которая сильно помогла в принятии дальнейших управленческих решений для развития бизнеса.

В заключение, скажу, что это был только первый этап построения аналитической отчетности. На текущий момент хранилище очень сильно выросло и в объемах, и в количестве источников. Но базис, заложенный в начале, очень сильно помог в развитии дальнейшего бизнеса. А смысл всей истории в том, что не обязательно тратить месяцы на разработку и моделирование архитектуры для построения DWH, как обычно это бывает. При запуске бизнеса или стартапа, можно пожертвовать техническим долгом для быстрого достижения бизнес целей и делать это можно вполне успешно.

Следите за новыми постами
Следите за новыми постами по любимым темам
22К открытий22К показов