Перетяжка IT-коробка
Перетяжка IT-коробка
Перетяжка IT-коробка
Написать пост

Почему Elasticsearch — хороший выбор для сбора и анализа данных среднего объёма

Elasticsearch — это одновременно NoSQL-хранилище дкументов и поисковая система. Рассказываем, где это может пригодиться.

43К открытий44К показов
Почему Elasticsearch — хороший выбор для сбора и анализа данных среднего объёма

Рассказывает Франсуа Руа, руководитель отдела разработки ГК «Авилекс»

Контекст задачи

Когда ваш бизнес предполагает анализ статистических данных, поступающих из разных источников, вам требуется эти данные собирать, хранить, индексировать, трансформировать в другие данные, анализировать и т. д.

Часто бывает так, что масштаб проекта ещё недостаточно велик для внедрения крупных программных платформ наподобие Hadoop, и в этом случае вам помогут универсальные варианты на базе стандартных NoSQL-решений, которые позволят справиться с накоплением и обработкой данных среднего объёма.

К таким решениям, исходя из нашей практики, относится Elasticsearch.

Что такое Elasticsearch

Elasticsearch — это представитель кластерных NoSQL с JSON REST API.

Мы можем считать его и нереляционным хранилищем документов в формате JSON, и поисковой системой на базе полнотекстового поиска Lucene.

Аппаратная платформа — Java Virtual Machine.

Официальные клиенты доступны на Java, NET (C#), Python, Groovy, JavaScript, PHP, Perl, Ruby.

Elasticsearch разрабатывается компанией Elastic вместе со связанными проектами, называемыми Elastic Stack, — Elasticsearch, Logstash, Beats и Kibana.

Beats — легковесные агенты и отправители данных с различных устройств. Logstash собирает и обрабатывает данные зарегистрированных событий. За хранение и поиск данных отвечает Elasticsearch. Kibana визуализирует данные через web-интерфейс.

Сегодня Elastic Stack с успехом используется сервисами eBay, Adobe, Uber, Nvidia, Blizzard, Citibank, Volkswagen, Microsoft, SoundCloud, GitHub, Netflix, Amazon. Чем же привлекателен Elasticsearch в контексте поставленной задачи? Давайте разберёмся.

Простой выбор

Одним из пунктов технического задания в рамках нашего проекта было требование собирать и анализировать статистику примерно с 25 (+/- 5) тысяч различных устройств.

Аппаратные возможности, операционные системы, сетевые интерфейсы, типы и назначение устройств неоднородны — от смартфона и телевизора до инфраструктурного сервера.

Устройства находятся в отдельных зданиях (примерно 1500 зданий, в каждом от 10 до 20 устройств), обслуживаются однотипной, но изолированной от других зданий инфраструктурой.

Оценив поставленную задачу, мы поняли, что нам не нужна большая суперсистема, которую можно отнести к категории BigData и/или HighLoad. С другой стороны, любые привычные методы сохранения и обработки информации, такие как запись в текстовый файл или SQL-базу, не подходили из-за объёма и специфики данных, поскольку большая часть работы происходила с логами устройств. Сыграло свою роль и наличие дополнительной статистики, которую сообщают сервисы, запущенные на устройствах.
Также в нашем случае по оценке объёма входящих данных, скорости их поступления и озвученных задач аналитики не было необходимости отдельно строить OLTP- и OLAP-системы.

Другими словами, система предполагает сбор статистики, к тому же она обеспечивает некоторое накопление данных и показ этой истории в удобном и интересном для менеджеров и аналитиков проекта виде. В результате мы выбрали Elasticsearch как оптимальное решение.

Да и Elastic Stack в целом предназначен для решения такого класса задач.

А что, собственно, собираем?

Как говорилось ранее, устройства разные, а вот статистическая информация нас, как правило, интересует достаточно однотипная: температура и загрузка процессора, объём потребляемой памяти, время и режимы использования устройства, какие программы запускались, сетевой трафик, сколько задач выполнено, что в логи записано, какие ошибки зарегистрированы и прочие данные с устройства и об устройстве.

Что на базе собранной информации хотят получить аналитики и менеджеры?

Самый частый из встречающихся сценариев — он же был изначально озвучен в техническом задании — это сбор и хранение всей (сырой) статистики по всем устройствам и сервисам за последний месяц с последующей агрегацией по дням и группировкой по зданиям с «бессрочным» хранением полученного результата.

Raw-индексы перезаписываются каждый месяц новыми данными, Agg-индексы накапливаются по дням «бесконечно» (пока хватает дискового пространства).

Все остальные пожелания по группировке и разбивке данных, по аналитическим срезам, визуальному представлению и т. п. выполняются аналитиками и менеджерами самостоятельно с использованием как Kibana, так и Power BI.

Периодически некоторые данные, чаще всего новые, получаемые из исходных, выделяются в отдельную задачу предварительного расчёта, которая выполняется с помощью вычислительной платформы Spark «по расписанию» и сохраняется в ещё один Agg-индекс, откуда эти подготовленные данные попадают в сложные отчёты и т. д.

Немного фактов о системе

Elasticsearch, как выяснилось, прекрасно подходит для работы в пределах определённого объёма данных (2–10 терабайт в год, 20–30 миллиардов документов в индексах), а также хорошо интегрируется с кластером Spark.

Агенты (Beats) помогают на конкретном устройстве или конкретном сервере собрать информацию, которая интересует пользователей системы. С помощью этих агентов можно собирать разного рода данные: системную информацию Windows из журнала, логи операционной системы Linux, данные устройства на ОС Android, самим анализировать трафик с устройства, будь то TCP, HTTP и т. д.

Локальный для инфраструктуры каждого здания Logstash отлично справляется с отправкой данных, собираемых агентами устройств, в централизованный кластер Elasticsearch, а Kibana предоставляет удобный способ построения веб-отчётов.

Необходимые инфраструктурные ресурсы

В нашем случае используется Linux-кластер в составе 3–10 нод.

Нода — это 8 процессорных ядер, 16–32 гигабайта оперативной памяти, жёсткий диск размером 1–5 терабайт. Сеть 1 Гигабит.

Масштабируемость

Данная подсистема статистики может работать с любой сферой деятельности, где требуется сбор и анализ статистических данных среднего объёма. Это может быть обработка статистической информации с 1 000 и до 30 000 холодильников, мобильных устройств, ноутбуков, интерактивных панелей и т. д.

Когда устройств меньше, чем 1–3 тысячи, система избыточна, есть более простые решения. Количество в 10 000–30 000 единиц оптимально по объёму и скорости появления новых данных с устройств.

50 и более тысяч устройств повлекут за собой усложнение системы, и в этом случае надо выбирать другое решение.

Хотя, если мы воспринимаем 50–100 тысяч устройств как три сегмента по 15–30 тысяч, то можно просто запустить три подсистемы нашей статистики.

Основная идея заключается в том, что чем более изолированы «сектора», тем проще применить решение формата «три по тридцать».

Заключение

На примере проекта городского масштаба мы рассмотрели применение Elasticsearch для работы с большими данными, оценили его преимущества и целесообразность применения для задач, где массивные решения вроде Hadoop избыточны.

Следите за новыми постами
Следите за новыми постами по любимым темам
43К открытий44К показов