Читать нас в Telegram

Как стать экспертом в Data Science: пошаговый план обучения

Рубрика: Планы обучения
,
41447
Партнёрский материал. Что это?

Мало кто может предсказывать события до ста процентов верно. Но дата-сайнтисты научились. А мы нашли последние тренды Data Science и составили план для тех, кто хочет глубоко изучить эту область.

Выбор языка

Сейчас в науке о данных используются два основных языка: Python и R. Язык R применяется для сложных финансовых анализов и научных исследований, потому его глубокое изучение можно отложить на потом.

На начальном этапе можно остановиться на изучении основ:

Быстро разобраться в теории языка R поможет сайт Quick-R.

Python популярен больше: на нём проще научиться писать код и для него написано множество пакетов визуализации данных, машинного обучения, обработки естественного языка и сложного анализа данных.

Что важно освоить в Python:

Чтобы освоить базовые понятия Python, у вас уйдёт примерно 4-6 недель при условии, что вы будете тратить на изучение 2-3 часа в день.

Где можно освоить: в Skillfactory.

Библиотеки для Python

NumPy

NumPy — библиотека научных вычислений. От неё зависит почти каждый пакет Python для Data Science или Machine Learning: SciPy (Scientific Python), Matplotlib, Scikit-learn.

NumPy помогает выполнять математические и логические операции: например, в ней содержатся полезные функции для n-массивов и матриц. А ещё библиотека поддерживает многомерные массивы и высокоуровневые математические функции для работы с ними.

Зачем нужно знать математику? Почему компьютер не может сам всё посчитать?

Часто методы машинного обучения используют матрицы для хранения и обработки входных данных. Матрицы, векторные пространства и линейные уравнения — всё это линейная алгебра.

Чтобы понимать, как работают методы машинного обучения, нужно хорошо знать математику. Поэтому будет лучше пройти весь курс алгебры целиком: самостоятельно или с наставниками.

Кроме того, математика и математический анализ важны для оптимизации процессов. Зная их, проще улучшать быстроту и точность работы моделей машинного обучения.

Что важно освоить:

Где можно подтянуть знания по NumPy: официальная документация.

Где можно подтянуть знания по алгебре: Calculus (глава 11), курс по математике для Data Science.

Pandas

Pandas — библиотека с открытым исходным кодом, построенная на NumPy. Она позволяет выполнять быстрый анализ, очистку и подготовку данных. Такой своеобразный Excel для Python.
Библиотека хорошо умеет работать с данными из разных источников: листов Excel, файлов CSV, SQL, веб-страниц.

Что важно освоить:

Где можно подтянуть знания по Pandas: Pydata.

Базы данных и сбор информации

Если вы уже знакомы с Python, Pandas и NumPy, можете приступать к изучению работы с базами данных и парсингу информации.

SQL

Несмотря на то, что NoSQL и Hadoop уже пустили корни в науку о данных, важно уметь писать и выполнять сложные запросы на SQL.

Часто необработанные данные — от электронных медицинских карт до истории транзакций клиентов — находятся в организованных коллекциях таблиц, которые называются реляционными базами данных. Чтобы быть хорошим специалистом по данным, нужно знать, как обрабатывать и извлекать данные из этих баз данных.

Нужно научиться:

Хорошо структурированный курс по работе с SQL можно пройти здесь: SkillFactory.

Парсинг информации

Важно:

Алгоритмы

Быть программистом без знания алгоритмов страшно, а Data Scientist’ом — опасно. Так что если вы уже освоили Python, Pandas, NumPy, SQL и API, пора учиться применять эти технологии для исследований.

Скорость работы хорошего специалиста часто зависит от трёх факторов: от поставленного вопроса, объёма данных и выбранного алгоритма.

Потому на этом этапе важно понять алгоритмы и структуры данных Беллмана-Форда, Дейкстры, двоичного поиска (и двоичные деревья как инструмент), поиска в глубину и ширину.

Подтянуть знания поможет Tproger (алгоритмы, структуры данных) и Khan Academy.

Машинное обучение и нейронные сети

Пора применять полученные навыки к решению реальных задач. До этого этапа важно знать математику: поиск, очистку и подготовку данных, построение моделей с точки зрения математики и статистики, их оптимизацию средствами матанализа — вот это всё.

Реальные задачи чаще всего решаются с помощью серьёзных библиотек вроде TensorFlow и Keras.

Нужно освоить:

Дополнительно закрепить знания о машинном обучении можно здесь: Машинное обучение от Эндрю Ына.

Заключение

Стать экспертом в Data Science непросто: приходится изучать множество инструментов и быть гибким, чтобы вовремя узнавать о трендах.

Хорошая стратегия — получить базу по Data Science на фундаментальном курсе, а новые инструменты и технологии изучать, решая практические задачи на работе.

, кубанский переводчик