Нахождение максимума из двух чисел без условных операторов и операторов сравнения
Вы читаете свежую версию статьи. Мы актуализировали задачу, изначально опубликованную 02 февраля 2015 года.
113К открытий116К показов
Самый распространенный вариант реализации функции max — проверка знака выражения a - b. В этом случае мы не можем использовать оператор сравнения, но можем использовать умножение.
Примечание Смысл задачи не в том, чтобы скрыть сравнение или условие в какую-нибудь стандартную функцию типа abs() или стандартный оператор типа целочисленного деления, а в том, чтобы всё это сделать вообще без инструкций ветвления на уровне процессора.
Обозначим знак выражения a - b как k. Если a - b >= 0, то k = 1, иначе k = 0. Пусть q будет инвертированным значением k.
Код будет иметь вид:
Это почти работоспособный код (можете проверить). Проблемы начинаются при переполнении. Предположим, что a = INT_MAX - 2 и b = -15. В этом случае a - b перестанет помещаться в INT_MAX и вызовет переполнение (значение станет отрицательным).
Можно использовать тот же подход, но придумать другую реализацию. Нам нужно, чтобы выполнялось условие k = 1, когда a > b. Для этого придется использовать более сложную логику.
Когда возникает переполнение a - b? Только тогда, когда a положительное число, а b отрицательное (или наоборот). Трудно обнаружить факт переполнения, но мы в состоянии понять, что a и b имеют разные знаки. Если у а и b разные знаки, то пусть k = sign(a).
Логика будет следующей:
1. если у a и b разные знаки:
// если a > 0, то b < 0 и k = 1.
// если a < 0, то b > 0 и k = 0.
// так или иначе, k = sign(a)
2. пусть k = sign(a)
3. иначе пусть k = sign(a - b) // переполнение невозможно
Приведенный далее код реализует этот алгоритм, используя умножение вместо операторов сравнения (проверить):
Отметим, что для большей наглядности мы разделяем код на методы и вводим переменные. Это не самый компактный или эффективный способ написания кода, но так мы делаем код понятнее.
Разбор взят из книги Гейл Л. Макдауэлл «Cracking the Coding Interview» (есть в переводе).
113К открытий116К показов



