Что делать, если вы хотите изучать ИИ, но не шарите в математике? Часть вторая. Практика
Рекомендуемые практические задачи для тех, кто хочет изучить ИИ и заниматься им профессионально, но имеет слабую математическую базу.

Рассказывает Даниель Джеффрис
Если вы читали первую статью из этой серии, то уже наверняка начали повышать свой уровень математических знаний. Может, некоторые из этих забавных символов стали чуточку понятнее.
Но вот ещё один маленький секрет, о котором вам никто не рассказал:
Если вы — разработчик или сисадмин, то вы уже наверняка используете кучу библиотек и фреймворков, в устройстве которых вы толком не разбираетесь. Вам не нужно знать принципы веб-скрапинга, чтобы использовать curl. С ИИ всё то же самое. Существует большое число фреймворков и проектов, для понимания и использования которых не требуется учёная степень.
Не поймите меня превратно. Знание математики нужно, чтобы чётко понимать, что происходит за кулисами. Оно позволит читать доклады об исследованиях и всякие умные книжки без головной боли. Поэтому книги из предыдущей статьи всё ещё актуальны, читайте их. Но если вы хотите начать использовать ИИ, это можно сделать уже сегодня.
Выберите проект
Сперва вам нужно выбрать проект, который смотивирует вас выйти из зоны комфорта.
Как вам проект с призовым фондом в миллион долларов, посвящённый лечению рака лёгких?
Kaggle — это площадка для машинного обучения. Прямо сейчас они проводят соревнование по улучшению классификации раковых опухолей. Участвовать может кто угодно, даже вы.
Я знаю, о чём вы думаете.
Хорошо, что вы так подумали, ведь это приводит нас ко второму шагу:
Переступите через свои страхи
Будучи любителем, вы не несете груз многолетних теоретических знаний и идей, что присущи профессионалам. Вспомните историю про студента, который решил две нерешаемые задачи математики, подумав, что это всего лишь домашнее задание. Дело в том, что наука о данных — это скорее искусство, чем наука. Так что идите и пробуйте.
И кто знает, что случится? Может, вы заметите что-то, что упустили знатоки, повлияете на развитие медицины и получите сладкий приз!
Перепробуйте кучу всего и облажайтесь
Вам подойдёт Keras с TensorFlow или Theano.
Вам даже не придётся ничего настраивать. Возьмите этот готовый Docker-образ.
Неважно, будете вы использовать TensorFlow или Theano. И то, и то — движки для машинного обучения, и для вашего уровня они абсолютно одинаковы. Keras — это библиотека фреймворков для машинного обучения, созданная одним из лучших исследователей ИИ в Google.
Если у вас уже есть компьютер на macOS или Linux с хорошей видеокартой Nvidia, то вы можете приступать. Если нет, то вам понадобится SSD, второй диск для хранения данных, 16–64 Гб ОЗУ и лучшая видеокарта(-ы) Nvidia, которую вы можете себе позволить. Процессор не важен. Или же, как вариант. вы можете использовать облачные сервисы, предоставляемые AWS, Google и Azure, но это будет очень накладно.
Доведите дело до конца
Теперь вы готовы начать. Вот очень простой пример работы с Keras.
Вам понадобится какой-то подход к решению задачи. И я снова помогу вам.
Самым эффективным методом разметки и изучения изображений является использование свёрточных нейронных сетей. Google, Facebook, Pinterest и Amazon используют их в своих проектах, там почему бы не последовать лучшим практикам?
На самом деле, если вы зайдёте на сайт соревнования, загрузите набор данных и откроете руководство, то увидите, что оно понятным образом рассказывает вам, как нужно обрабатывать изображения при помощи свёрточной нейронной сети и бекэнда из Keras и TensoFlow. Вуаля!
После этого начинайте действовать. Пробуйте разные параметры и алгоритмы. Экспериментируйте и получайте удовольствие. Вдруг вы натолкнётесь на что-то, что упустили знатоки?
Если вы готовы попробовать что-то более серьёзное, почитайте статьи участников соревнования. Выяснится, что некоторые исследователи не против поделиться своим секретным ингредиентом. Попробуйте эту статью, она поможет начать грамотно исследовать данные. А этот пост уже более сложный, но не без причины — он является самым популярным на момент написания статьи и рассказывает о препроцессинге данных: предварительной обработке, которая облегчит работу нейронным сетям. 2D-изображения станут трёхмерными, это же круто!
Откровенно говоря, если вы напишете весь этот код и он будет работать, вы уже молодец.
Есть одно “но”: кто-то уже получил максимальный результат. Он сделал всё по-умному, изучив лучшие работы и увеличив обучающий набор вдвое. Это абсолютно законно, но вам бы не помогло, поскольку у вас другая задача. Вы хотите узнать, как использовать нейронные сети для классификации данных.
Вот и всё! Если повезёт, вы поможете в борьбе с раком и получите небольшое вознаграждение. Неплохо для начала.
Но даже если вы не победите, не отчаивайтесь — вы учитесь использовать ИИ. И что бы не произошло, помните: машинное обучение — это весело!