SQL против NoSQL на примере MySQL и MongoDB

Когда необходимо выбрать СУБД, главный вопрос обычно заключается в выборе реляционной (SQL) или нереляционной (NoSQL) структуры. У обоих вариантов есть свои преимущества, а также несколько ключевых особенностей, которые стоит иметь в виду при выборе.

Основные различия

Язык

Представьте себе город — пусть он называется Город А, где все говорят на одном языке. Все дела ведутся на нём, он используется в любой форме коммуникации — в целом это единственное средство взаимодействия и взаимопонимания для обитателей города. Изменение языка в любой из сфер деятельности собьёт всех с толку.

Теперь представьте Город Б, где все обитатели говорят на разных языках. Они совершенно по-разному взаимодействуют с окружающим миром, и для них не существует «универсального» средства общения.

Эти два примера наглядно демонстрируют различия между реляционными и нереляционными базами данных, и за этими различиями скрываются ключевые особенности обеих СУБД.

Реляционные базы данных используют структурированный язык запросов (Structured Query Language, SQL) для определения и обработки данных. С одной стороны, это открывает большие возможности для разработки: SQL один из наиболее гибких и распространённых языков запросов, так что его выбор позволяет минимизировать ряд рисков, и будет особенно кстати, если предстоит работа с комплексными запросами. С другой стороны, в SQL есть ряд ограничений. Построение запросов на этом языке обязывает предопределять структуру данных и, как в случае с Городом А, последующее изменение структуры данных может быть губительным для всей системы.

Нереляционные базы данных, в свою очередь, предлагают динамическую структуру данных, которые могут храниться несколькими способами: ориентированно по колонкам, документо-ориентированно, в виде графов или на основе пар «ключ-значение». Такая гибкость означает следующее:

  • Вы можете создавать документы, не задавая их структуру заранее;
  • Каждый документ может обладать собственной структурой;
  • У каждой базы данных может быть собственный синтаксис;
  • Вы можете добавлять поля прямо во время работы с данными.

Масштабируемость

В большинстве случаев SQL базы данных вертикально масштабируемые, то есть вы можете увеличивать нагрузку на отдельно взятый сервер, наращивая мощность центральных процессоров, объёмы ОЗУ или системы хранения данных. А NoSQL базы данных горизонтально масштабируемы. Это означает, что вы можете увеличивать трафик, распределяя его или добавляя больше серверов к вашей СУБД. Всё равно, что добавлять больше этажей к вашему зданию, либо добавлять больше зданий на улицу. Во втором случае, система может стать куда больше и мощнее, делая выбор NoSQL базы данных предпочитаемым для больших или постоянно меняющихся структур данных.

Структура

В реляционных СУБД данные представлены в виде таблиц, в то время как в нереляционных — в виде документов, пар «ключ-значение», графов или wide-column хранилищ. Это делает SQL базы данных лучшим выбором для приложений, которые предполагают транзакции с несколькими записями — как, например, система учётных записей — или для устаревших систем, которые были построены для реляционных структур.

В число СУБД для SQL баз данных входят MySQL, Oracle, PostgreSQL и Microsoft SQL Server. Для работы с NoSQL подойдут MongoDB, BigTable, Redis, RavenDB Cassandra, HBase, Neo4j и CouchDB.

SQL vs. NoSQL: MySQL или MongoDB

Разобравшись с ключевыми структурными различиями SQL и NoSQL баз данных, стоит внимательно рассмотреть их функциональные особенности на примере MySQL и MongoDB.

MySQL: реляционная СУБД

Преимущества MySQL:

  • Проверено временем: MySQL — крайне развитая СУБД, что означает наличие большого сообщества вокруг неё, множество примеров и высокую надёжность;
  • Совместимость: MySQL доступна на всех основных платформах, включая Linux, Windows, Mac, BSD и Solaris. Также у неё есть библиотеки для языков вроде Node.js, Ruby, C#, C++, Java, Perl, Python и PHP;
  • Окупаемость: Это СУБД с открытым исходным кодом, находящаяся в свободном доступе;
  • Реплицируемость: Базу данных MySQL можно распределять между несколькими узлами, таким образом уменьшая нагрузку и улучшая масштабируемость и доступность приложения;
  • Шардинг: В то время как шардинг невозможен на большинстве SQL баз данных, MySQL является исключением.

MongoDB: нереляционная СУБД

Преимущества MongoDB:

  • Динамическая схема: Как упоминалось выше, эта СУБД позволяет гибко работать со схемой данных без необходимости изменять сами данные;
  • Масштабируемость: MongoDB горизонтально масштабируема, что позволяет легко уменьшить нагрузку на сервера при больших объёмах данных;
  • Удобство в управлении: СУБД не нуждается в отдельном администраторе базы данных. Благодаря достаточному удобству в использовании, ей легко могут пользоваться как разработчики, так и системные администраторы;
  • Скорость: Высокая производительность при выполнении простых запросов;
  • Гибкость: В MongoDB можно без вреда для существующих данных, их структуры и производительности СУБД добавлять поля или колонки.

Какую СУБД выбрать?

MySQL — верный выбор для любого проекта, который может положиться на предопределённую структуру и заданные схемы. С другой стороны, MongoDB — отличный вариант для быстрорастущих проектов без определённой схемы данных. В особенности если вы не можете определить схему для своей базы данных, вам не подходит ни одна из предлагаемых другими СУБД или в вашем проекте она постоянно меняется, как, например, в случае с мобильными приложениями, системами аналитики в реальном времени или контент-менеджмента.

Перевод статьи «The SQL vs NoSQL Difference: MySQL vs MongoDB»

Подобрали два теста для вас:
— А здесь можно применить блокчейн?
Серверы для котиков: выберите лучшее решение для проекта и проверьте себя.