Алгоритмы и структуры данных для начинающих: сортировка

В этой части мы посмотрим на пять основных алгоритмов сортировки данных в массиве. Начнем с самого простого — сортировки пузырьком — и закончим «быстрой сортировкой» (quicksort).

Для каждого алгоритма, кроме объяснения его работы, мы также укажем его сложность по памяти и времени в наихудшем, наилучшем и среднем случае.


Также смотрите другие материалы этой серии: бинарное дерево, стеки и очереди, динамический массив, связный список, оценка сложности алгоритма и множества.

Метод Swap

Для упрощения кода и улучшения читаемости мы введем метод Swap, который будет менять местами значения в массиве по индексу.

Пузырьковая сортировка

Сложность Наилучший случай В среднем Наихудший случай
Время O(n) O(n2) O(n2)
Память O(1) O(1) O(1)

Сортировка пузырьком — это самый простой алгоритм сортировки. Он проходит по массиву несколько раз, на каждом этапе перемещая самое большое значение из неотсортированных в конец массива.

Например, у нас есть массив целых чисел:

data_structures_036

При первом проходе по массиву мы сравниваем значения 3 и 7. Поскольку 7 больше 3, мы оставляем их как есть. После чего сравниваем 7 и 4. 4 меньше 7, поэтому мы меняем их местами, перемещая семерку на одну позицию ближе к концу массива. Теперь он выглядит так:

data_structures_037

Этот процесс повторяется до тех пор, пока семерка не дойдет почти до конца массива. В конце она сравнивается с элементом 8, которое больше, а значит, обмена не происходит. После того, как мы обошли массив один раз, он выглядит так:

data_structures_038

Поскольку был совершен по крайней мере один обмен значений, нам нужно пройти по массиву еще раз. В результате этого прохода мы перемещаем на место число 6.

data_structures_039

И снова был произведен как минимум один обмен, а значит, проходим по массиву еще раз.

При следующем проходе обмена не производится, что означает, что наш массив отсортирован, и алгоритм закончил свою работу.

Сортировка вставками

Сложность Наилучший случай В среднем Наихудший случай
Время O(n) O(n2) O(n2)
Память O(1) O(1) O(1)

Сортировка вставками работает, проходя по массиву и перемещая нужное значение в начало массива. После того, как обработана очередная позиция, мы знаем, что все позиции до нее отсортированы, а после нее — нет.

Важный момент: сортировка вставками обрабатывает элементы массива по порядку. Поскольку алгоритм проходит по элементам слева направо, мы знаем, что все, что слева от текущего индекса — уже отсортировано. На этом рисунке показано, как увеличивается отсортированная часть массива с каждым проходом:

data_structures_040

Постепенно отсортированная часть массива растет, и, в конце концов, массив окажется упорядоченным.

Давайте взглянем на конкретный пример. Вот наш неотсортированный массив, который мы будем использовать:

data_structures_041

Алгоритм начинает работу с индекса 0 и значения 3. Поскольку это первый индекс, массив до него включительно считается отсортированным.

Далее мы переходим к числу 7. Поскольку 7 больше, чем любое значение в отсортированной части, мы переходим к следующему элементу.

На этом этапе элементы с индексами 0..1 отсортированы, а про элементы с индексами 2..n ничего не известно.

Следующим проверяется значение 4. Так как оно меньше семи, мы должны перенести его на правильную позицию в отсортированную часть массива. Остается вопрос: как ее определить? Это осуществляется методом FindInsertionIndex. Он сравнивает переданное ему значение (4) с каждым значением в отсортированной части, пока не найдет место для вставки.

Итак, мы нашли индекс 1 (между значениями 3 и 7). Метод Insert осуществляет вставку, удаляя вставляемое значение из массива и сдвигая все значения, начиная с индекса для вставки, вправо. Теперь массив выглядит так:

data_structures_042

Теперь часть массива, начиная от нулевого элемента и заканчивая элементом с индексом 2, отсортирована. Следующий проход начинается с индекса 3 и значения 4. По мере работы алгоритма мы продолжаем делать такие вставки.

data_structures_043

Когда больше нет возможностей для вставок, массив считается полностью отсортированным, и работа алгоритма закончена.

Сортировка выбором

Сложность Наилучший случай В среднем Наихудший случай
Время O(n) O(n2) O(n2)
Память O(1) O(1) O(1)

Сортировка выбором — это некий гибрид между пузырьковой и сортировкой вставками. Как и сортировка пузырьком, этот алгоритм проходит по массиву раз за разом, перемещая одно значение на правильную позицию. Однако, в отличие от пузырьковой сортировки, он выбирает наименьшее неотсортированное значение вместо наибольшего. Как и при сортировке вставками, упорядоченная часть массива расположена в начале, в то время как в пузырьковой сортировке она находится в конце.

Давайте посмотрим на работу сортировки выбором на нашем неотсортированном массиве.

data_structures_044

При первом проходе алгоритм с помощью метода FindIndexOfSmallestFromIndex пытается найти наименьшее значение в массиве и переместить его в начало.

Имея такой маленький массив, мы сразу можем сказать, что наименьшее значение — 3, и оно уже находится на правильной позиции. На этом этапе мы знаем, что на первой позиции в массиве (индекс 0) находится самое маленькое значение, следовательно, начало массива уже отсортировано. Поэтому мы начинаем второй проход — на этот раз по индексам от 1 до n — 1.

На втором проходе мы определяем, что наименьшее значение — 4. Мы меняем его местами со вторым элементом, семеркой, после чего 4 встает на свою правильную позицию.

data_structures_045

Теперь неотсортированная часть массива начинается с индекса 2. Она растет на один элемент при каждом проходе алгоритма. Если на каком-либо проходе мы не сделали ни одного обмена, это означает, что массив отсортирован.

После еще двух проходов алгоритм завершает свою работу:

data_structures_046

Сортировка слиянием

Сложность Наилучший случай В среднем Наихудший случай
Время O(n·log n) O(n·log n) O(n·log n)
Память O(n) O(n) O(n)

 

Разделяй и властвуй

До сих пор мы рассматривали линейные алгоритмы. Они используют мало дополнительной памяти, но имеют квадратичную сложность. На примере сортировки слиянием мы посмотрим на алгоритм типа «разделяй и властвуй» (divide and conquer).

Алгоритмы этого типа работают, разделяя крупную задачу на более мелкие, решаемые проще. Мы пользуемся ими каждый день. К примеру, поиск в телефонной книге — один из примеров такого алгоритма.

Если вы хотите найти человека по фамилии Петров, вы не станете искать, начиная с буквы А и переворачивая по одной странице. Вы, скорее всего, откроете книгу где-то посередине. Если попадете на букву Т, перелистнете несколько страниц назад, возможно, слишком много — до буквы О. Тогда вы пойдете вперед. Таким образом, перелистывая туда и обратно все меньшее количество страниц, вы, в конце концов, найдете нужную.

Насколько эффективны эти алгоритмы?

Предположим, что в телефонной книге 1000 страниц. Если вы открываете ее на середине, вы отбрасываете 500 страниц, в которых нет искомого человека. Если вы не попали на нужную страницу, вы выбираете правую или левую сторону и снова оставляете половину доступных вариантов. Теперь вам надо просмотреть 250 страниц. Таким образом мы делим нашу задачу пополам снова и снова и можем найти человека в телефонной книге всего за 10 просмотров. Это составляет 1% от всего количества страниц, которые нам пришлось бы просмотреть при линейном поиске.

Сортировка слиянием

При сортировке слиянием мы разделяем массив пополам до тех пор, пока каждый участок не станет длиной в один элемент. Затем эти участки возвращаются на место (сливаются) в правильном порядке.

Давайте посмотрим на такой массив:

data_structures_047

Разделим его пополам:

data_structures_048

И будем делить каждую часть пополам, пока не останутся части с одним элементом:

data_structures_049

Теперь, когда мы разделили массив на максимально короткие участки, мы сливаем их в правильном порядке.

data_structures_050

Сначала мы получаем группы по два отсортированных элемента, потом «собираем» их в группы по четыре элемента и в конце собираем все вместе в отсортированный массив.

data_structures_051

Для работы алгоритма мы должны реализовать следующие операции:

  1. Операцию для рекурсивного разделения массива на группы (метод Sort).
  2. Слияние в правильном порядке (метод Merge).

Стоит отметить, что в отличие от линейных алгоритмов сортировки, сортировка слиянием будет делить и склеивать массив вне зависимости от того, был он отсортирован изначально или нет. Поэтому, несмотря на то, что в худшем случае он отработает быстрее, чем линейный, в лучшем случае его производительность будет ниже, чем у линейного. Поэтому сортировка слиянием — не самое лучшее решение, когда надо отсортировать частично упорядченный массив.

Быстрая сортировка

Сложность Наилучший случай В среднем Наихудший случай
Время O(n·log n) O(n·log n) O(n2)
Память O(1) O(1) O(1)

 

Быстрая сортировка — это еще один алгоритм типа «разделяй и властвуй». Он работает, рекурсивно повторяя следующие шаги:

  1. Выбрать ключевой индекс и разделить по нему массив на две части. Это можно делать разными способами, но в данной статье мы используем случайное число.
  2. Переместить все элементы больше ключевого в правую часть массива, а все элементы меньше ключевого — в левую. Теперь ключевой элемент находится в правильной позиции — он больше любого элемента слева и меньше любого элемента справа.
  3. Повторяем первые два шага, пока массив не будет полностью отсортирован.

Давайте посмотрим на работу алгоритма на следующем массиве:

data_structures_052

Сначала мы случайным образом выбираем ключевой элемент:

data_structures_053

Теперь, когда мы знаем ключевой индекс (4), мы берем значение, находящееся по этому индексу (6), и переносим значения в массиве так, чтобы все числа больше или равные ключевому были в правой части, а все числа меньше ключевого — в левой. Обратите внимание, что в процессе переноса значений индекс ключевого элемента может измениться (мы увидим это вскоре).

Перемещение значений осуществляется методом partition.

data_structures_054

На этом этапе мы знаем, что значение 6 находится на правильной позиции. Теперь мы повторяем этот процесс для правой и левой частей массива.

Мы рекурсивно вызываем метод quicksort на каждой из частей. Ключевым элементом в левой части становится пятерка. При перемещении значений она изменит свой индекс. Главное — помнить, что нам важно именно ключевое значение, а не его индекс.

data_structures_055

Снова применяем быструю сортировку:

data_structures_056

И еще раз:

data_structures_057

У нас осталось одно неотсортированное значение, а, поскольку мы знаем, что все остальное уже отсортировано, алгоритм завершает работу.

Заключение

На этом мы заканчиваем наш цикл статей по алгоритмам и структурам данных для начинающих. За это время мы рассмотрели связные списки, динамические массивы, двоичное дерево поиска и множества с примерами кода на C#.

Перевод статьи «Sorting Algorithms»